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ABSTRACT
Mobile cloud gaming requires a very low end-to-end latency. Edge
computing significantly reduces network latency. However, in mobil-
ity scenarios, the user will frequently move out of the edge server’s
coverage area, requiring frequent migration of the game instance.
This paper presents Talaria, an in-engine content synchronisation
solution for unnoticeable game instance migration between edge
servers. Talaria creates a minimal instance with content immediately
relevant to the game experience, allowing the client to switch servers
in a minimal amount of time. The remaining content is then syn-
chronised according to priority until the game’s state is coherent
between both instances. Our implementation of Talaria as a Unity
engine plugin reduces the game’s downtime by 61% compared to
one-off server migration, with an average latency below 25 ms for
the server migration, and 87 ms for the entire game synchronisation.

CCS CONCEPTS
• Computer systems organization → Cloud computing; • Net-
works → Network mobility; • Software and its engineering →
Interactive games.
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1 INTRODUCTION
In recent years, mobile games have become increasingly resource-
intensive. Games such as Genshin Impact1, Wild Rift2, or Player
Unknown Battleground3 rely on sophisticated 3D graphics and have
1https://genshin.mihoyo.com/
2https://wildrift.leagueoflegends.com/
3https://www.pubgmobile.com/
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Figure 1: Talaria provides ultrafast migration of mobile edge
gaming instances by iterative game element synchronisation
waves: (1) player, camera, and nearby objects, (2) visible objects,
(3) remaining objects.

millions to dozens of millions of users worldwide. Mobile cloud
gaming enables users to experience such high-end games on con-
strained mobile devices by offloading computation-heavy operations
to powerful remote machines. Gaming is highly interactive and
requires very low end-to-end latency to ensure a satisfying user expe-
rience [3, 9, 24]. The edge computing paradigm significantly reduces
network latency by bringing the computation resources closer to the
user, ideally a single hop away. In a mobile setting, users frequently
move out of the coverage area of the edge server, requiring frequent
migrations of the application to maintain minimal latency. As a re-
sult, most edge applications are either stateless or rely on process
checkpointing to migrate containers in a matter of seconds [6, 13].

Live game migration for mobile edge gaming faces significant
challenges. Gaming relies on Graphics Processing Units (GPU) for
rendering sophisticated 3D scenes and objects. This GPU usage is
stateful, with objects and textures remaining in the memory between
frames. As such, migrating gaming instances requires migrating
the content of the GPU memory. GPU checkpointing has yet to be
addressed for convenient live migration of game instances. Current
solutions targeting GPU checkpointing for gaming and 3D render-
ing take dozens of seconds to checkpoint and restore an instance,
notwithstanding the network transmission that may account for sev-
eral GB of data [8, 18]. Migration thus leads to a significant pause
in the gaming experience. Finally, 5G aims to densify the edge com-
puting infrastructure, leading to users frequently moving between
edge server coverage areas and thus frequent migration for stateful
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applications such as games. Under such conditions, frequent and
lengthy migrations will considerably degrade the user experience.

To address these issues, we develop Talaria, an in-engine solu-
tion composed of a game migration protocol and an object-based
migration algorithm for seamless video game instance migration.
By operating in-engine, Talaria only synchronises the elements that
are critical to the game state’s coherence, significantly outperform-
ing checkpoint-based solutions that recreate perfect clones of the
instance by dumping the entire memory content. Talaria’s migration
leads to service interruptions below 25 ms, with 44 ms between the
two frames during which the migration happens. Coincidentally,
operating in-engine also reduces the number of unnecessary memory
copies, leading to faster frame capture, encoding, and transmission.
To achieve such low migration time, Talaria proactively starts a new
game instance on the next server. When the migration starts, Talaria
saves the game objects’ state and synchronises them between both
game instances in several waves. As shown in Figure 1, the objects
are synchronised according to their importance for the user expe-
rience, starting with the player, camera, and nearby objects (wave
1), and ending with objects that are not visible by the user (wave 3).
Talaria synchronises the visible objects down to the exact animation
frame, enabling a seamless transition while significantly reducing
the network load compared to checkpointing.

Our contribution can be summarised as follow:

(1) Design of Talaria, an in-engine framework allowing seamless
migration of cloud and edge gaming instances.

(2) Implementation of Talaria as a Unity engine plugin and
integration of Talaria within a sophisticated game project.

(3) Evaluation of Talaria: service interruption shorter than 25 ms,
and total migration below 87 ms, while resulting in a network
load below 30 KB; much faster than traditional checkpointing.

The rest of this paper is organised as follows: after reviewing
the most relevant related works in Section 2, we describe Talaria’s
system architecture in Section 3 and detail its implementation in
Section 4. We finally evaluate Talaria’s performance in Section 4
and address the implications for mobile edge gaming in Section 6.

2 RELATED WORKS
Many works address live container migrations [23] but few consider
GPU applications, and most do not offer acceptable performance for
cloud gaming. This section first discusses container checkpointing
before moving to GPU-bound migration. Finally, we discuss in-
engine cloud gaming works that relate to Talaria’s architecture.

Container checkpointing: Fast container migration has become a
priority with multi-access edge cloud (MEC). Most modern solutions
rely on container checkpointing. However, checkpointing can be
costly if the application’s memory footprint is high, leading to dozens
to thousands of seconds of service interruption [14]. Many works
aim to reduce the migration time through iterative pre-copying [12],
intermediary Network File Storage (NFS) servers [1], or a pipeline
of processing stages [7, 14]. However, these works do not target
GPU applications such as gaming, evaluation is often performed on
lightweight applications, and the systems migrate services in dozens
of seconds, incompatible with seamless cloud gaming migration. In
this paper, we significantly improve the migration performance by

performing layered migration at the engine level and synchronising
the game elements in order of importance.

GPU application migration: Migrating GPU applications has
long been a significant problem, as GPU architectures prevent con-
venient checkpointing. Transparent Gaming [2] can provide gaming
applications on top of any GPU-equipped mobile computing nodes.
However, It does not consider seamless migration between nodes
during a live gaming session. Most works focus on CUDA [5] or
OpenCL [17] applications [21, 25], which rely on a specific set of
instructions. Among these studies, Prades et al. [19] use GPU virtu-
alisation for checkpointing, which could be expanded to OpenGL
applications. Few studies address replaying OpenGL calls [8, 11, 18].
Although the technique is promising, the performance is still too
limited (i.e., 4 seconds to restart Maya from a checkpoint image [8])
for real-time cloud gaming migration. Besides, not all solutions con-
sider GPU-accelerated OpenGL checkpointing [8]. In this paper, we
circumvent this issue by bootstrapping the game instance and itera-
tively synchronising the game state, leading to significantly shorter
migrations and lower network load.

In-engine cloud gaming: Although this paper is the first study on
in-engine edge cloud gaming migration, several works considered
in-engine cloud gaming for improving performance. Kahawai [4]
renders a low-quality version of the game frames at the client, which
is combined with the high-quality frames returned by the server to re-
duce the network load and enhance reliability. Similarly, Messaoudi
et al. [16] devise a framework where only part of the game is ren-
dered on the server. Finally, Outatime [10] renders multiple frames
corresponding to several predicted outcomes and lets the client pick
the appropriate frame. These works demonstrate the feasibility of
in-engine cloud gaming and pave the way for in-engine mobile edge
gaming migration such as Talaria.

3 SYSTEM ARCHITECTURE
We consider the following scenario: a user plays a game executed on
an edge server (server A) while commuting. The lightweight client
transmits the user controls to the server, which renders the game
frames4, encodes them, and transmits them over the network. The
client then decodes and buffers the frames for display. Rendering
frames is a GPU-intensive stateful operation that cannot be easily
migrated through checkpointing. During a gaming session, the user
moves to a location within the range of another server (server B),
going through a migration area covered by both servers. Figure 2
summarises the messages exchanged during the migration.

3.1 Proactive Game Instance Provision
When the user enters the migration area, Talaria’s client sends a
REQUEST message to server B to start a new game instance. Ta-
laria only synchronises the static elements that are essential to the
game session, such as the current game level or the player’s general
location in the game world. The game instance on server B then
establishes a connection with server A. Preloading the instance on
server B hides up to several minutes of loading times by requiring
only fine-grained synchronisation when the actual migration occurs.
At this stage, the client has a direct connection to both servers.

4In the rest of this paper, the term ’frame’ refers to video frames exclusively.
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Figure 2: Primary messages exchanged during Talaria’s migra-
tion. Talaria results in a minimal service interruption, with the
entire downtime being in the order of a few round-trip times.

The preloaded game instance idles on server B until the user
leaves the migration area. If the user leaves the migration area for
server B’s coverage area, migration occurs, and the preloaded in-
stance becomes the active instance. On the other hand, if the user
returns to the exclusive range of server A, the preloaded instance is
destroyed, and the instance running on server A remains the primary
instance. If the user stays in the migration area longer than expected,
it can send additional messages to server B to update significant
events (UPDATE). These messages help signify important game
progress, for instance, the need to load a new level.

To minimise the resource usage of the preloaded instance, it is
critical to predict the user’s motion accurately. Most mobile game
players game while commuting, going through well-established
paths, which considerably simplifies the prediction task. Another
solution could be decorrelating network handover and instance mi-
gration by initiating the prewarm instance only once the user has
moved into the server’s coverage area.

3.2 Migration
When the user leaves the migration area for server B’s coverage
area, it triggers the migration by sending a message to server A
(MIGRATE). Upon receiving the MIGRATE message, server A
transmits the last frame to the client with a specific tag (LAST)
and starts the migration with server B. The client then closes the
connection with server A and exclusively uses the connection with
server B for sending player input and receiving the game frames.

Immediately after sending the last frame, server A starts the
migration process. The state of the objects is dumped on server A and
synchronised with server B (SYNC messages). Talaria aggregates
the objects in three groups corresponding to three migration waves
to accelerate the migration process and minimise the downtime
for the client, with the first wave being sufficient to recover the
immediate action’s state on server B seamlessly. In practice, the
pause duration can be made effectively unnoticeable to the user,
contrary to checkpointing-based solutions (see Section 3.3)

The first migration phase encompasses all essential objects for
the current game state. Upon receiving the first SYNC message,
server B immediately synchronises the essential components and
transmits a frame to the client. We expect inter-server connections

SYNC(1)

Frame, LAST

Frame

MIGRATE

Server A Server BClient

Figure 3: Time diagram of Talaria’s service interruption during
migration. The service interruption is unnoticeable if 𝛿𝐼 = 𝛿𝐷,𝐴 +
𝛿𝐿,𝐵 + 𝛿𝑅,𝐵 < 33𝑚𝑠.

to display a lower latency than the wireless client-server connection.
As such, the entire network communication between the first MI-
GRATE message to Server A and the first frame from server B takes
less than two round trip times (RTT). As Talaria transitions between
game instances in a minimal time (ideally lower than the interframe
time), it is necessary to preserve all the components involved in the
current action, for instance, the main camera, the player character,
and the objects near the player character. Talaria synchronises these
components down to the exact frame of the animation to ensure the
continuity between the frames sent by server A and server B. Server
A then proceeds to the subsequent two migration phases, correspond-
ing to the visible and remaining objects, respectively. Visible objects
are also synchronised down to the state of the animation, while other
objects only require their general state to be updated (transform,
behaviour state, hit points). Although we made the choice in this
paper to consider visible objects for the second wave, other strate-
gies could be applied, such as synchronising all objects in a certain
perimeter around the player character or only the objects that are
engaged with the player character in their behaviour state machine.
Once server B has updated the state of all objects, it signals the
successful migration to server A (END message), which closes the
connection with server B and terminates the instance.

3.3 Service Interruption
As shown in Figure 2, Talaria results in a minimal service interrup-
tion. The network transmission of the control messages spans over
less than two round-trip times, assuming inter-server latency is lower
than client-server latency. Between the reception of the MIGRATE
message by server A and the generation of the first frame by server
B, no content is generated or transmitted to the client. If the time
between the reception of the last frame from server A and the first
frame from server B 𝛿𝐼 is higher than the interframe time, the user
will notice the service interruption. Let 𝛿𝑀 be the total migration
time (from client sending MIGRATE to client receiving server B’s
first frame), 𝛿𝑆𝐼 the service interruption time (time during which
neither server A or server B work towards rendering or transmitting
a frame), 𝛿𝐷,𝐴 the time to dump the first wave of objects on server
A, 𝛿𝐿,𝐵 the time to load the first wave of objects on server B, 𝛿𝑅,𝐴
and 𝛿𝑅,𝐵 the rendering times on server A and B, respectively, and
𝛿𝑇,𝐴𝐵 , 𝛿𝑇,𝐴𝐶 , 𝛿𝑇,𝐵𝐶 , the transmission time between server A and
server B, server A and client, and server B and client, respectively.
We consider eventual frame encoding and decoding time as part of
their transmission time 𝛿𝑇,𝑓 𝑟𝑎𝑚𝑒 . We summarize these notations in
Figure 3. Assuming that 𝛿𝑇,𝐴𝐶 < 𝛿𝑀 , we have:
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𝛿𝑀 = 𝛿𝐼 + 𝛿𝑇,𝐴𝐶,𝑚𝑒𝑠𝑠 + 𝛿𝑅,𝐴 + 𝛿𝑇,𝐴𝐶,𝑓 𝑟𝑎𝑚𝑒 (1)

𝛿𝐼 = 𝛿𝑆𝐼 + 𝛿𝑇,𝐵𝐶,𝑓 𝑟𝑎𝑚𝑒 − 𝛿𝑇,𝐴𝐶,𝑓 𝑟𝑎𝑚𝑒 (2)

𝛿𝑆𝐼 = 𝛿𝐷,𝐴 + 𝛿𝑇,𝐴𝐶,𝑓 𝑟𝑎𝑚𝑒 + 𝛿𝐿𝐵 (3)

As such, the service interruption time will be unnoticeable to the
user if 𝛿𝐼 is lower than the interframe time. At 30 FPS, we should
have 𝛿𝐼 < 33𝑚𝑠. If we consider servers A and B to be located on
the same network and connected with very high speed wired links,
and that the time to encode and transmit a game frame to the client
is similar from server A and server B, we can approximate that
𝛿𝐼 = 𝛿𝐷,𝐴 + 𝛿𝐿,𝐵 + 𝛿𝑅,𝐵 < 33𝑚𝑠. In practice, most cloud gaming
systems buffer frames to account for unexpected latency variations.
Given a buffer accounting for 𝛿𝑡 = 100𝑚𝑠 latency (about 3 frames at
30 FPS), this extra latency can be absorbed by the buffer as long as

𝛿𝐼 < 𝛿𝑡 − (𝑚𝑎𝑥 (𝛿𝑓 𝑟𝑎𝑚𝑒 ) −𝑚𝑖𝑛(𝛿𝑓 𝑟𝑎𝑚𝑒 )) (4)

with𝑚𝑎𝑥 (𝛿𝑓 𝑟𝑎𝑚𝑒 ) and𝑚𝑖𝑛(𝛿𝑓 𝑟𝑎𝑚𝑒 ) being the maximum and mini-
mum frame generation and transmission latency of the frames cur-
rently in the buffer 𝛿𝑓 𝑟𝑎𝑚𝑒 = 𝛿𝑇,𝑚𝑒𝑠𝑠 + 𝛿𝑇,𝑓 𝑟𝑎𝑚𝑒 + 𝛿𝑅 .

In this model, we presume that the coverage area of edge servers
is not limited to the base station [15], allowing us to consider the han-
dover and migration as two separate events. As such, we disregard
the handover’s impact on migration.

4 IMPLEMENTATION
We implement Talaria as a plugin to the Unity engine that we inte-
grate within the demonstration game provided with the 3D Game Kit
plugin5. This game allows us to demonstrate the applicability of Ta-
laria on an existing real-life polished game project while minimising
the development effort on the game itself.

We first create an in-engine remote gaming system that forwards
the input from the client to the server, receives the frames from
the server and displays them on-screen. The client captures the user
input and transmits them to the server. Upon reception of client input,
the server updates the game state. The primary camera renders the
corresponding frame into a RenderTexture, which is copied to the
socket. The client copies the received frame onto a RenderTexture
applied to a RawImage object to display it at the correct resolution.

Our implementation runs the game at 1920x1080 px and a fram-
erate of 30 FPS. As this paper focuses on game instance migration
rather than the implementation of a cloud gaming platform, we per-
form the following simplifications: (1) The server does not encode
the frames, resulting in a significant network load; (2) Data is trans-
mitted over TCP for reliability and in-order delivery at the transport
layer; (3) The client operates on a best-effort basis and does not
buffer the frames; (4) Many works already focus on mobility predic-
tion. We thus trigger the preloaded instance setup and the migration
through client key presses [20]. These simplifications present little
impact in Talaria’s operation, as discussed in Section 6.

Talaria relies on few elementary components. It is thus easily
portable to other games, granted that the game state variables are
declared public within their respective classes. Talaria requires syn-
chronisable objects to be explicitly identified, which can be per-
formed through a Synchronisable tag. However, the Unity Engine

5https://assetstore.unity.com/packages/templates/tutorials/3d-game-kit-115747

only allows a single tag per object, which may interfere with tags
that have already been assigned in established projects. We thus rely
on a Synchronisable Prefab to attach to the synchronisable game
objects as a child. This prefab allows Talaria to programmatically
find all synchronisable objects and assign them a unique ID without
further developer intervention. This prefab is attached to all objects
that can be altered during the game: the player character and camera,
enemies, and destructibles. The demonstration game in the proto-
type implementation contains 51 synchronisable objects: the player
character, the camera, 28 enemies and 23 inanimate destructibles.

A single script implements Talaria’s operation as described in Sec-
tion 3. Talaria saves and restores only the states that directly affect
the gameplay to minimise the transmitted data. We thus focus on:
(1) Game Object’s position and rotation, (2) Animator state, (3) Re-
maining health. The enemies’ behaviour state machine is represented
by the Animator’s state machine, their position, and the player char-
acter’s position. As such, we do not need to synchronise behavioural
data. The demonstration game in the prototype implementation relies
on standardised elements, where the state of all objects is read and
set through public variables and dedicated functions. Only the script
that controls all damageables required to introduce a setter function
for the remaining health, leading to a total of 10 lines of codes to
modify in the game’s codebase. In total, Talaria consists of a prefab
and a single 400-lines script at the server-side and little adaptation
to the existing project’s codebase (10 lines in our example project).
We represent the state of each Unity game object with a C# object
that we serialise in the corresponding SYNC message. For the sake
of simplicity, we do not consider movable objects that only fill a
decorative function (vines, fireflies) and disable their motion.

We implement the synchronisation waves as follows: the first
SYNC synchronises the player character and the camera; the second
SYNC targets the visible objects; the third SYNC synchronises all re-
maining objects. The third SYNC does not contain the animator state,
as the objects are not visible to the player. However, synchronising
down to the exact animation frame is critical in previous waves to
make the migration unnoticeable to the user and preserve the objects’
state as Unity’s animator drives the behaviour state machine.

5 EVALUATION
Evaluation setup: We run the two server instances and the client on
a single computer running Windows 10 with CPU Ryzen 9 5900x,
Nvidia RTX 3090, and 64GB RAM. Running all three components
on the same machine allows us to focus on characterising the system
migration independently from the network conditions. We start both
server instances at the same time and trigger the initial instance
setup on server B as well as the live migration through two distinct
keystrokes at the client-side (see Section 4).

Pipeline Characterization: Figure 4 presents the end-to-end
latency of the pipeline, from the transmission of user input to the
display of the corresponding frame on the client. Using the Unity
profiler, we select 10 random frames on the client and 10 random
frames on server A and average the duration of each operation.
On the client, capturing and transmitting user input takes 0.46 ms
(std=0.065). The server then takes 5.00 ms (std=0.73) to execute
the game logic, 4.46 ms (std=0.27) to render the frame, and 9.44 ms
(std=3.26) to transmit the frame. The client receives the frame in

https://assetstore.unity.com/packages/templates/tutorials/3d-game-kit-115747
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Figure 4: End-to-end latency of the prototype system’s cloud
gaming pipeline. The server process frames in 18.9 ms on aver-
age, while the client takes less than 5 ms to display.
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Figure 5: Experimental Scenarios
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Figure 6: Migration time. With Talaria, the player starts the
game on Server 2 at the end of the first wave (20 ms). Total
migration takes less than 90 ms.

3.94 ms (std=0.21), uploads it to a texture in 0.45 ms (std=0.58),
and renders in 0.30 ms (std=0.31). As we do not encode frames,
sending and receiving the frame spreads over 13 ms. Encoding would
bring down this delay at the cost of extra encoding latency. We thus
consider this latency to be reasonable. The server processes frames
in an average of 18.9 ms with an end-to-end latency below 25 ms,
allowing us to run the game without buffering the frames.

We then characterise Talaria’s migration. We measure the service
downtime, the time for each wave, the total synchronisation time, and
the network load and compare these measurements to a single-wave
baseline. All measurements are averaged over 10 runs with 95%
confidence interval error bars. We consider the following settings
(see Figure 5): (1) start of the game, no synchronisable object in
the player’s view; (2) high point, many synchronisable elements
visible in the distance (25 objects, 15 animated); (3) side of the map,
between the first two scenarios (15 objects visible, 7 animated).

0 5000 10000 15000 20000 25000

Scenario 1

Scenario 2

Scenario 3

Single wave

SYNC1 SYNC2 SYNC3
Wave 1 Wave 2 Wave 3

Figure 7: Network load (KB). Less than 30KB are transmitted
over the network. Aggregating objects in waves significantly
compresses the network load.

0 10 20 30 40

Time between frames

Service Interrup�on

Character State Character Send Character Load

Game Logic Render (Server) Send Frame

Wave 1

Figure 8: Time between the last frame from server A and the first
frame of server B (top) and service interruption time (bottom)
during the migration. The average interframe time is below
43 ms and the service interruption time below 25 ms.

Migration time: Figure 6 decomposes the migration time on
server A (6.a) and server B (6.b). Loading the entire game state
(all three SYNC messages) on server B takes less than 20 ms in all
scenarios. On the other hand, animator synchronisation is costly. The
total synchronisation time is proportional to the number of visible
animated objects (about 0.27 ms per inanimate object and 1.90 ms
per animated object). The time to identify objects as immediately
relevant in wave 2 is negligible as we only consider objects visible
on-screen. The total migration takes less than 90 ms in all scenarios.

Network load: The network load (Figure 7) is lightweight, with
the entire migration fitting in less than 30 KB. Each migration wave
consists of serialised state objects containing only the primary states
variables necessary to preserve the current action. The camera object
takes 796 B when serialised independently, while the player character
synchronisation takes 1570 B. Wave 2 objects featuring an Animator
component take 1441 B while objects without an Animator and wave
3 objects take 800 B. We aggregate these objects on a per-wave basis:
camera + player character in wave 1, all visible objects in wave 2,
and all invisible objects in wave 3. This aggregation reduces the
network load by 25 to 50% depending on the number of aggregated
objects by minimising the amount of data required for serialisation.
Besides such aggregation, we do not perform any other compression.

Service Interruption: Figure 8 represents the time between the
last frame from server A and the first frame from server B, and
the service interruption duration. With Talaria requiring only the
first SYNC packet for the client to switch server (wave 1), the
service interruption time remains below 25 ms, leading to a total time
between frames is below 44 ms. Given Equation 4, this latency can be
made invisible as long as 𝛿𝑡 > 44 + (𝑚𝑎𝑥 (𝛿𝑓 𝑟𝑎𝑚𝑒 ) −𝑚𝑖𝑛(𝛿𝑓 𝑟𝑎𝑚𝑒 )).
For 100 ms buffering, this corresponds to 66 ms between frame
arrivals, which is high even in current LTE networks. In comparison,
single-wave migration takes over 74 ms, leading to 2 to 3 skipped
frames, a noticeable interruption of the game display. Talaria results
in a 61% shorter downtime than single-wave migration.
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Table 1: Talaria vs state-of-the-art migration solutions

Solution Chkpt.
time

Restore
time

Net.
Load

Downtime

C/R [11] – Qwaq 5.6 s N/A 4.2-5.6 s
C/R [11] – glxgears 8.6 s N/A 6.45-8.6 s

C/R [8] – Maya 1.9–4 s N/A >1.9–4 s
C/R [8] – glxgears 2.16 s N/A >2.16 s

C/R [18] – openarena 2 s 17 s 165 KB 16.5–19 s

Live Migration [22] 4.82–23 s >100 MB 6.8–25 s

Single-wave Talaria 0.066 s 0.008 s <30 KB 0.074 s
Talaria 0.069 s 0.018 s <30 KB 0.025 s

6 DISCUSSION
Comparison to traditional checkpointing: As stated in Section 2,
few works target GPU checkpointing [8, 11, 18]. We compare Ta-
laria to these works in Table 1. All solutions take several seconds to
migrate light 3D applications. Besides, they rely on intercepting API
calls, further impacting application performance [8, 18]. Traditional
checkpoint-based CPU migration takes up to 7.8 s notwithstanding
network transmission [22]. In comparison, Talaria leads to a service
downtime below 25 ms, with a total migration time of 87 ms. Even
when synchronising in a single wave, our method only takes 74 ms,
two orders of magnitude faster than the existing methods. Lin et
al. [11] raise the possibility of transmitting the OpenGL commands
before the migration, decreasing the downtime by up to 25%. How-
ever, this approach still results in migration times of the order of
the second while Talaria essentially nullifies the service interrup-
tion. Note that such performance is achieved with a more resource-
intensive game than state-of-the-art approaches. At 1920x1080 px,
openarena uses 108 MB RAM while the game used to demonstrate
Talaria uses 764 MB. Even the Maya instance considered by Hou
et al. is loaded with a light model (121 MB). Checkpointing our
demonstration game would thus result in much larger files, leading
to longer checkpointing duration and higher network latency.

Implementing Talaria in existing games: Talaria is designed to
integrate existing Unity projects seamlessly and leverages standard
Unity components to perform the migration. Developers can inte-
grate Talaria in their projects by importing the package and adding
the Synchronisable prefab to objects. If the project relies on Unity’s
standard scripts and Animator, the objects can be synchronised with
no further intervention. We demonstrate this feature in Section 4
by integrating Talaria within an existing project seamlessly. If the
project does not rely on Unity’s standard components, it is necessary
to declare the properties of the synchronisable objects explicitly in
the code responsible for dumping and serialising the objects’ states.
Most games embed a save feature that performs similar operations,
so the additional development cost would remain minimal.

Scaling to larger projects: In this paper, we implement Talaria
over a fairly sophisticated example project. However, the most am-
bitious games developed with the Unity engine may present many
more objects. In such a case, the developer may choose to add mul-
tiple migration waves to rebuild the state of the game over time.
If many elements need to be synchronised during the first wave, a
brief interruption may be acceptable if the migration is combined

with game loading times (which would be possible by incorporating
the migration with the engine). Given the current performance of
Talaria, we estimate that the first wave would require to contain
1180 elements to present a service interruption over one second,
still much lower than current state-of-the-art checkpointing solu-
tions. The demonstration game is also a reasonably paced game,
which is quite forgiving of user error. We expect faster-paced games
such as first-person shooters to require further optimisation as even
single-frame issues can impact the user experience.

Limitations: In-engine operation limits the applicability of Ta-
laria to the goodwill of the developers. We address this issue by
implementing Talaria as a Unity engine plugin that simplifies inte-
gration within existing projects. Besides, we expect edge gaming
to be driven by major actors who have the resources to deploy an
entire edge infrastructure and control over game development (poten-
tially over their own game engines). In-engine mobile edge gaming
would therefore represent a reasonable solution for such actors. Our
implementation does not consider encoding/decoding and does not
buffer frames to address potential jitter. Encoding frames would
significantly reduce the network transmission time, at the cost of
a short encoding and decoding latency (few ms per frame6). In-
engine cloud gaming can also significantly accelerate encoding and
decoding latencies by avoiding costly CPU-GPU copies. As stated
in Sections 3.3 and 5, buffering frames would minimise service
interruption and framerate drops during the migration.

Future Works: This study provides the first step towards ultrafast
migration of edge gaming instances. We plan to address the limita-
tions of our implementation and integrate frame encoding/decoding,
lighter transport protocols, and frame buffering. We will also im-
plement Talaria within a larger-scale first-person shooter game, fea-
turing dynamic movement and many enemies. Such a game will
allow us to control the game element synchronisation fully. We will
consider what happens when many synchronisable objects are in the
player’s view and how to synchronise the game when the player can
interact (shoot) with faraway objects. It will also allow measuring
the impact of migration on the player’s performance and satisfaction
in fast-paced games. Finally, we will extend our experiments to con-
firm the operation of Talaria in a wide range of network conditions
and characterise the impact of migration on user experience.

7 CONCLUSION
In this paper, we presented Talaria, a framework for ultrafast migra-
tion of edge gaming instances. By integrating the migration algo-
rithm in the game’s engine, Talaria results in near-seamless migra-
tion, with imperceptible service interruption and minimal impact
on what the player sees on-screen. Talaria synchronises the essen-
tial gameplay elements between the two game instances faster and
switches servers than the interframe time, preventing drops in framer-
ates. As such, Talaria outperforms checkpoint-based state-of-the-art
solutions by two orders of magnitude.
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