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The computational capabilities of recentmobile devices enable the processing of natural features for Augmented
Reality (AR), but the scalability is still limited by the devices’ computation power and available resources. In
this paper, we propose EdgeXAR, a mobile AR framework that utilizes the advantages of edge computing
through task offloading to support flexible camera-based AR interaction. We propose a hybrid tracking system
for mobile devices that provides lightweight tracking with 6 Degrees of Freedom and hides the offloading
latency from users’ perception. A practical, reliable and unreliable communication mechanism is used to
achieve fast response and consistency of crucial information. We also propose a multi-object image retrieval
pipeline that executes fast and accurate image recognition tasks on the cloud and edge servers. Extensive
experiments are carried out to evaluate the performance of EdgeXAR by building mobile AR Apps upon it.
Regarding the Quality of Experience (QoE), the mobile AR Apps powered by EdgeXAR framework run on
average at the speed of 30 frames per second with precise tracking of only 1∼2 pixel errors and accurate image
recognition of at least 97% accuracy. As compared to Vuforia, one of the leading commercial AR frameworks,
EdgeXAR transmits 87% less data while providing a stable 30 FPS performance and reducing the offloading
latency by 50 to 70% depending on the transmission medium. Our work facilitates the large-scale deployment
of AR as the next generation of ubiquitous interfaces.
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(a) Server recognizes images in the request
frame.

(b) Results mismatch with the current view.

Fig. 1. Alignment problems caused by a high motion-to-photon latency in AR systems.

1 INTRODUCTION
Augmented Reality (AR) is a natural way of interaction between the real world and digital virtual
world [63]. For a typical AR application, it recognizes the surrounding objects or surfaces and over-
lays information on top of the camera view with a 3D renderer [41]. Currently, mobile Augmented
Reality (MAR) is the most practical AR platform as mobile devices are widely used in our daily
life, and many MAR SDKs (e.g., Apple ARKit [7], Google ARCore [24], Vuforia [2]) are released to
enable fast development of AR apps. However, mobile devices are still suffering from the inherent
problems of mobile platforms (limited computation power, screen real-estate, and battery life),
which restrict their performance in practical AR applications [39]. Most of the AR applications in
the market are working in simple scenarios, displaying fixed contents based on detected surfaces,
and limiting their usage to gaming or simple technical demonstrations.

The key enabler of practical AR applications is context awareness, with which AR applications
recognize the objects and events in the vicinity of the users and consequently adapts the displayed
information to the user’s needs [37].Large-scale image recognition [55, 66] is a crucial component
of context-aware AR systems, leveraging the vision of mobile devices with extensive applications in
retail, education, tourism, or advertisement. For example, an AR assistant application may recognize
road signs, posters, or book covers around users, and overlay useful virtual information on top
of those physical elements. Despite promising benefits, large-scale image recognition encounters
major challenges on mobile platforms. First, large-scale image recognition requires the storage
of large image datasets and the corresponding annotation contents are also huge in scale and
size. Second, the image recognition task is computation intensive and consumes a lot of time and
energy [62]. Motion-to-photon latency is a common evaluation metric in AR systems. It is defined
as the latency between an action performed by the user (for instance, a movement), and its actual
incidence on the displayed view. With a high motion-to-photon latency, the user is likely to move
between the image capture and the completion of the computations. As such, alignment problems
arise, where the computation results mismatch the current view of the user. We display example of
such alignment problems on Figure 1. It takes on average more than 2 seconds to perform object
recognition on a mobile CPU (Snapdragon 800) [54]. Besides alignment problems, such a high
computation latency will result in an extremely low framerate that will further degrade the quality
of experience (QoE).

Computation offloading [10, 13, 20, 47] fills the gap between context-aware AR experience and
insufficient mobile capabilities. By utilizing cloud image recognition, cloud-based AR systems
communicate with the cloud to offload the image recognition tasks and retrieve useful information.
However, cloud-based systems significantly reduce the computation time at the cost of additional
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network latency [22]. Edge computing is a promising paradigm that allows to significantly reduce
network latency and provides geographical context awareness that simplifies some object recogni-
tion requests by reducing the size of the search space. However, contrary to cloud computing, the
computing power available is no longer virtually unlimited, and multiple devices compete for a
limited – although more powerful – computing resource. There is no one-size-fits all solution, and
motion-to-photon is thus inevitable in MAR applications, whether on-device, cloud-based, or at the
edge of the network. It is therefore necessary to strike a balance between computation latency and
network latency to provide computation results within acceptable deadlines for the user, especially
when MAR move to the city-wide applications [40]. Besides optimising the resource usage, MAR
applications should provide fallback mechanisms to handle outdated results and avoid alignment
problems. Existing cloud-based AR systems fail in solving this mismatching problem. They either
ask the users to hold their hands steady to coarsely match the result with the current view, or
neglect the performance constraints and real-time interaction requirement of mobile devices.
To address the scalability and latency issues in MAR applications, we propose EdgeXAR, an

edge-based MAR framework with both an innovative mobile client design and a powerful image
recognition pipeline running on edge servers. EdgeXAR is hardware-agnostic and can run on both
CPU and GPU systems. EdgeXAR solves the alignment problem with an innovative tracking system
running on-device, where the historical tracking status of the request frame is recorded and finally
utilized by the tracker to compute a corrected position of the physical image after receiving the
result. By correcting the position of the physical image, our tracking system allows for significant
latency compensation, allowing to deploy EdgeXAR not only at the edge, but also on servers located
further in the network. With our fine-grained AR offloading pipeline, AR applications developed
with EdgeXAR support large-scale image recognition with the guarantee of high QoE. To the best
of our knowledge, EdgeXAR is the first framework that supports real-time multi-image recognition
on mobile clients, overcomes mismatching between outdated offloading result and current view,
augments virtual contents according to user’s perspective, and enables stable 30 FPS performance
for AR applications on off-the-shelf mobile devices. Our contribution can be summarized as follows:

• A lightweight mobile tracking system that provides precise 6 degree-of-freedom (6DoF)
multi-object tracking, compensates for mismatching of the recognition result from the user’s
perspective, and achieves real-time performance at 30 frames-per-second (FPS).

• Amulti-object edge image recognitionpipeline that provides low-latency, high-accuracy
multi-image recognition, as well as pose estimation services.

• A fine-grained edge offloading pipeline that minimizes the overall recognition latency
and mobile energy consumption in mobile scenarios.

• Extensive evaluation of EdgeXAR for both edge and cloud computing scenarios. EdgeXAR
allows for real-time 30 FPS multiple image recognition and tracking with only 1~2 pixel error.
It performs tracking under 25ms for up to 240 feature points and can compensate offloading
latency up to 600ms. Compared to leading commercial cloud AR recognition frameworks
such as Vuforia, EdgeXAR provides a constant 30 FPS framerate, transmits 87% less data
over the network, and reduces the oflloading latency by 50% in WiFi and 70% using mobile
broadband networks.

The remainder of this paper is organized as following: Section 2 summarizes the existing work
on MAR systems and latency compensation techniques. Section 3 discusses the design choices of
EdgeXAR. Section 4 gives an overview of the system architecture. Section 5 and 6 describe themobile
client design and server design, respectively. The implementation details and the experimental
results are shown in Section 7. Finally, the conclusion is given in Section 9.
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2 RELATEDWORK
As a complete framework for MAR applications, EdgeXAR combines elements of on-device MAR,
cloud and edge-based MAR, image retrieval techniques, and latency compensation strategies. In
this section, we summarize the main works related to these elements.

2.1 On-device Mobile Augmented Reality
Typical mobile AR SDKs can be divided into two categories: a) traditional SDKs (e.g., Wikitude [3],
Vuforia [2], Blippar [1]) that heavily utilize computer vision technologies for marker-based AR.
These SDKs first recognize and track the relative camera pose to the marker for each frame; b)
emerging AR SDKs (e.g., Google ARCore [24], Apple ARKit [7]) that bring marker-less AR onto the
mobile platform. Such markerless SDKs calculate an absolute pose of the camera in the environment
with visual-inertial odometry (VIO) [42, 43].

For marker-based AR, Nate et al. [26] proposes a mobile system to recognize and estimate the
6DoF pose of planar shapes at interactive frame rate using recursive tracking. Wagner et al. applies
SIFT and Ferns to mobile platforms with proper modifications [58]. They also built a mobile system
for multi-object tracking and detection [59]. Global object pose estimation and device localization
are also implemented on the mobile platform [8, 57]. Closer to our solution, Amateur [11] per-
forms matches navigation information and road-view vision on-device and provides compensation
mechanisms for incomplete and erroneous detection.

For marker-less AR, both ARCore and ARKit leverage feature points from the monocular camera
and motion data from the inertial measurement unit (IMU) to track the pose of the mobile device
in 3D. Their tracking capability is more flexible and scalable compared to marker-based AR.

Although these solutions allow the development of MAR applications without requiring external
computation capabilities, they are limited by the capabilities of the device. As such, these systems
can only operate within a constrained context, and thus present limited performance and scalability.
On the other hand, EdgeXAR combines edge computing with on-device computations for real-time
and scalable MAR applications.

2.2 Cloud- and Edge-based Mobile Augmented Reality
Google Goggles [28] looks up the database to recognize a picture taken by user and retrieve useful
information. The systems in [21, 50] address the scalability issue by integrating image retrieval
techniques into the tracking system on a PC. However, their work cannot handle the mismatching
problem. [34] describes a similar system, in which extra information like region of interest (ROI)
of the object is required to initialize the recognition and tracking. Overlay [31] requires a user
to hold the camera still to display annotation in a coarsely correct position. VisualPrint [32] is
another cloud-based mobile augmented reality system which uploads extracted features instead of
raw images or video stream to save network usage. Finally, cloud-based AR systems also allow to
introduce further features, such as collaborative creation, synchronously or asynchronously [25].
Compared to above cloud-based AR systems, EdgeXAR handles the offloading latency by design, and
compensates for mismatching issues through on-device object tracking. EdgeXAR also minimizes
the overall latency and energy consumption.

Other systems offload only the most computation-heavy operations to the cloud. Jaguar [64] is an
application that leverages GPU systems at the edge of the network to perform object recognition. In
comparison, EdgeXAR is a hardware-agnostic framework that can provide real-time performance
with servers located in the cloud or at the edge thanks to its latency compensation capabilities. The
tracking system in EdgeXAR allows for a finer accuracy, with only 1-2 pixel error. CloudAR [65]
proposes dynamic offloading of computations in the cloud. EdgeXAR is able to leverage both edge
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and cloud servers, and proposes advanced latency compensation techniques to account for the
additional offloading latency.

2.3 Image Retrieval Techniques
One of the fundamental topics in image retrieval is the image feature detection and extraction.
SIFT [44] and SURF [9] provide good results with robust scale and rotation invariant. CNN fea-
tures [35] provide state-of-the-art representation accuracy. However, these approaches are relative
slow. Combined with binary descriptors, corner feature points detectors such as Harris corner
detector [27], FAST [51], and AGAST [46] provide faster solutions.

One can encode images into single vectors for further image retrieval and classification. Authors
in [15] introduce the bag-of-visual-words (BOV) model. The authors in [30, 33, 49] present Fisher
kernel encoding to improve the representational accuracy in comparison with k-means clustering
used in BOV. In recent years, Fisher Vector (FV) has been widely used in image retrieval with good
performance as shown in [18, 48]. The authors in [23, 29] propose LSH for fast nearest neighbor
search, and many improvements are proposed in [6, 17, 36]. Some other image feature coding and
hashing techniques are proposed in [19, 52].
EdgeXAR combines multi-scale AGAST detector with FREAK binary feature descriptors. We

finally do Fisher encoding on binary features for image recognition.

2.4 Latency Compensation Techniques
Volker Strumpen et al. presentes a latency hiding protocol for asynchronous message passing
in UNIX environments [56]. With this protocol distributed parallel computing can be utilized in
applications.

Outatime [38] is a mobile cloud gaming systemwhich delivers real-time gaming interactivity. The
basic approach combines input prediction with speculative execution to render multiple possible
frame outputs which could occur in a round trip time of future. Kahawai [16] is another mobile
gaming systems which aims at providing high-quality gaming quality by offloading a portion of the
GPU computation to server-side infrastructure. In contrast with previous thin-client approaches
which require a server-side GPU to render the entire content, Kahawai uses collaborative rendering
to combine the output of a mobile GPU and a server-side GPU into the displayed output.
Different from those existing methods, EdgeXAR specifically targets latency compensation for

MAR, which is more challenging as the alignment problem between the virtual and the physical
world is more sensitive to latency, while being less predictable. EdgeXAR provides seamless real-time
user experience while keeping the mobile client as lightweight as possible.

3 BACKGROUND AND DESIGN CHOICES
In this section, we explore the design space of the cloud and edge-based AR systems, and discuss
the advantages and disadvantages of possible solutions to motivate the design of EdgeXAR.

3.1 Is VIO a Good Solution for Context-aware AR?
ARKit and ARCore hit the market, and the technology underneath, VIO locates mobile devices
in the environment independent of the detection of specific markers, providing a more flexible
and scalable tracking capability when compared with traditional marker-based AR. However, VIO
cannot recognize the surrounding objects and get context information. Most of existing AR apps
powered by ARCore or ARKit work on the detected horizontal surfaces (e.g., table, floor) for gaming
or demonstration. We have to make the decision between marker-based tracking and marker-less
tracking.
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Fig. 2. Results of ARCore tracking in four scenarios: (a) view changing; (b) camera rotation; (c) scaling caused
by forward and backward movement; (d)object moving. The red edges are the tracking results on the mobile
client.

To learn the tracking performance of ARCore, especially in the scenario of tracking recognized
image, we build an AR app based on ARCore, which recognizes one image stored in the app and
tracks it afterwards. The app is deployed on a Samsung Galaxy S8 smartphone, which is a flagship
model and well-calibrated for ARCore. The tracking results of four representative sequences are
shown in Figure 2, from which we find several problems of VIO-based AR systems:

VIO tracking of markers are inaccurate and unstable. As shown in Figure 2, ARCore track-
ing results are not accurate in the cases of camera tilt, rotation and scaling, with obviousmismatching
between the physical image and the tracking result. Unstable tracking results arise frequently as
well, where the annotated image edges hop during tracking as shown in the second half of sequence
(b), and this is not a rare case as hopping happens in four out of ten repeated attempts. As VIO
tracking combines both the visual and inertial outputs, the noisy and biased inertial measurements
are the main reason for this unsatisfying performance.

VIO needs good initialization. Upon loading of the app, a initialization procedure is needed
before the tracker would work. The initialization usually takes few seconds, and the user has to hold
and move the phone for a few seconds. On the contrary, visual-based tracker used in marker-based
AR would start working instantly upon loading without an initialization.

VIO cannot track moving objects. Unlike the tracking of object’s relative pose in visual
tracking systems, typical VIO systems are supposed to work in a rigid environment, where the
localization procedure locates the devices’ pose and ignores moving objects, as shown in sequence
(d) of Figure 2. Although some existing work have addressed the moving object tracking prob-
lem [60, 61] in simultaneous localization and mapping (SLAM) systems, these methods make major
modifications of the SLAM pipeline, which add up to the overall complexity and is not currently
supported by ARCore or ARKit.

VIO needs physical size of recognized image. Without considering the dynamic object
tracking, the static object tracking of VIO is different from that of visual tracker as well. Visual
tracker works with the relative pose and size of the physical object and annotation contents, so
that the remote recognition service would return the pose of the image object without caring about
the real size of the image. However, as the odometry unit of VIO systems is in actual physical size,
the tracking of static objects needs the physical size of the image as well, which is not possible
to infer on a remote server and not trivial to get on the mobile client. In this app developed with
ARCore, we have to manually input the physical size of the image, which limits its pervasive usage.

6



EdgeXAR EICS’22, June 2022, Sofia Antipolis, France

Fig. 3. Typical mobile AR pipeline.

Template Matching Mobile Client Edge Server

Time Consumption(ms) 438.2 ± 96.5 57.62 ± 6.14
Energy Consumption(uAh) 276.0 ± 60.9 N/A

Table 1. Time and energy consumption for template matching with SIFT features on a Xiaomi Mi5 phone and
an edge server, respectively. The value after ± is the standard deviation (for 20 experimental runs).

With the shortages shown above, a VIO based solution is not adequate in context-aware AR
with image recognition functionalities. Marker-based AR performs better in terms of accuracy,
robustness, ease of use, and availability for image tracking at the current stage.

3.2 Marker-based AR Pipeline
A typical pipeline of marker-based mobile AR systems has 7 building blocks, as shown in Figure 3.
It starts with Frame Preprocessing that shrinks the size of a camera frame, e.g., by downscaling it
from a higher resolution to a lower one. The next step is Object Detection that checks the existence
of targets in the camera view of a mobile device and identifies the regions of interest (ROI) for
the targets. It will then apply Feature Extraction to extract feature points from each ROI and
Object Recognition to determine the original image stored in a database of to-be-recognized objects.
Template Matching verifies the object-recognition result by comparing the target object with the
recognized original image. It also calculates the pose of a target (i.e., position and orientation).
Object Tracking takes the above target pose as its initial input and tracks target object between
frames in order to avoid object recognition for every frame. Finally, Annotation Rendering augments
the recognized object by rendering its associated content.

3.3 Latency Compensation Choices for User-centric AR Systems
As offloading image recognition to a remote location, whether at the edge or in the cloud, will
bring inevitable latency, edge and cloud-based AR systems need to handle this latency properly so
that the annotation contents can be aligned with the physical objects precisely. For marker-based
AR, there are two ways to hide the latency.

One possible solution is that the server sends the original image back and the client executes
template matching to calculate the current pose of the image. However, template matching is not a
trivial task on mobile, which consumes much time and energy when compared with edge execution,
as shown in Table 1. Executing template matching on the server reduces the overall pipeline latency
significantly. On the other hand, even if template matching is executed on the client, the time
consumption of template matching would also make the mismatching happen, as several frames
have passed during the template matching procedure.
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Fig. 4. EdgeXAR overview showing the data flow and the main components of the mobile client and the
server.

Another solution is tracking the image movement during the edge recognition procedure, as
tracking is much more light-weight compared to template matching. With the tracked image pose
transformation during the edge recognition procedure, the recognition result can be corrected
accordingly to match the current view. A previous work Glimpse [14] proposes to solve the
mismatching problem with tracking as well, but Glimpse caches selected frames during edge
recognition and starts tracking after receiving the result, with the recognition result utilized as the
tracking initial input. However, this design would erupt processing burden on the mobile device,
and the tracking of a sequence of frames takes long time and causes mismatching as well.

As a result, our system disperse the tracking processing during the edge recognition procedure.
Our design achieves overall low latency while keeping the mobile client lightweight and fluent.

4 SYSTEM DESIGN OVERVIEW
Figure 4 shows an overview of the system architecture, that includes the mobile client and the edge
server. Following is a brief description of the overall procedure:

On the mobile client, visual tracker gets the camera video feed and starts extracting and tracking
feature points within view once the application is launched. Unlike [34], our system would not
require the user to input the region of interest (ROI), and camera stream is the only input of the
whole framework. Therefore, the visual tracker simply tracks feature points of the entire frame
at this time. An object recognition request is sent to server to recognize target objects inside the
camera frame.

The server creates worker threads to process the received request. These worker threads handle
the receiving and sending messages on the network, as well as performing the visual tasks.
The result is then sent back to the mobile client, including poses and identity information of

the recognized objects. With feature points tracking, visual tracker is able to calculate the location
transition of any specific area inside the frames. Therefore the current poses of the objects can
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Fig. 5. Visual tracker pipeline. The sequence above in grayscale stands for the feature point extraction and
tracking pipeline, where each number indicates the feature points set number; the sequence below in color
stands for the objects pose initialization and update pipeline, where K stands for a key frame, C stands for a
continuous frame, and R stands for a result frame.

Fig. 6. Multi-object tracking of EdgeXAR. The red and green boundaries are the output of the visual tracker,
allowing users to perform camera-based AR interaction with objects with high flexibility.

be derived from the result, which are poses of objects within the request frame. These poses are
further utilized by the content renderer to render virtual contents.

This process repeats periodically under visual tracker’s scheduling, thus new objects are recog-
nized and augmented continuously.

5 MOBILE CLIENT DESIGN
The mobile client works mainly on tracking and contents rendering while offloading the heavy
image recognition tasks to an edge server. In this section, we focus on introducing the functional
modules on mobile client.

5.1 Visual Tracker
Visual tracker (Fig. 5) carries out the core logic of mobile client as a scheduler of other modules.
We design our own feature point based tracker for two reasons. First, EdgeXAR starts tracking
without a ROI or the object position, and the renderer needs precise 6DoF results rather than simple
rectangle bounding boxes to position virtual contents in a 3D space. Second, visual tracker must
achieve a high FPS on the mobile client, and feature point based tracking (e.g., optical flow [45]) is
lightweight enough to fulfill this requirement.

We decouple the feature tracking and object pose estimation tasks into two separate pipelines, as
shown in Figure 5. The first pipeline works on feature point extraction and tracking for the whole
frame. The second pipeline works on pose initialization and recognized objects update.

The feature point extraction and tracking pipeline, which is the basis of visual tracker,
starts processing the camera frames upon launching the mobile client. At the beginning, the
pipeline extracts a sufficient number of feature points using the algorithm proposed in [53]. Then
it composes a feature points set and updates the coordinates of these feature points in following
frames via optical flow.
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As shown in Figure 6, visual tracker generates an array called “bitmap" to support multi-object
tracking. The length of bitmap equals to the number of feature points. Bitmap records the existence
and group belonging of each feature point indicated by assigned values. For each array element,
“0" means the corresponding feature point is lost during the tracking process, while positive value
(e.g., object ID) indicates the point drops inside the contour of a specific object. After feature point
extraction in the first frame, bitmap initializes all values to 1 to indicate the existences of these
feature points, while the group belongings remain uncertain.
Visual tracker extracts and tracks a group of feature points. It is a rare case for visual tracker

to use the same set of feature points from the beginning to the end. Feature points regeneration
may happen in two scenarios, namely, new objects are recognized by the server or the number of
feature points decreases to a certain threshold. The former one indicates either that new objects
have moved into the camera view, or the camera view has changed dramatically. The latter one is
caused by some feature points lost during tracking, or by camera view changing as well.

The visual tracker extracts a new set of feature points from a camera frame when any of above
mentioned conditions is met. This design ensures that any pair of consecutive frames always have
enough number of corresponding feature points from a same set. Therefore it enables uninterrupted
object pose estimation.

The object pose initialization and update pipeline, working on top of the former pipeline,
starts from the first offloading result. Taking any pair of frames as an example, if we knew the old
pose of an object and the old locations of feature points within its contour, we can calculate the
new corresponding metrics using geometric transformation.
As shown in Figure 5, 30 camera frames compose one logical cycle of this pipeline. Camera

frames can be divided into three categories based on their functionalities, i.e., key frames, continuous
frames and result frames. The visual tracker sends out a recognition request when receiving the
first frame of each cycle, i.e., a key frame. Meanwhile, the tracker keeps a copy of the current
feature points. It receives the recognition result at a later frame, i.e., a result frame. EdgeXAR uses
the preserved feature points from key frames and result frames to calculate the new poses of the
recognized objects in result frames.

The visual tracker processes a target object with three steps: a) position initialization as described
above; b) position tracking via geometric transformation between consecutive continuous frames;
c) position update with new recognition results from latter result frames. We design this logical
cycle for two reasons. First, new target objects can appear continuously within view. apparently,
increasing the offloading frequency can shorten the cold start latency for recognizing new object,
but the logical cycle time should be longer than offloading latency. We choose 30 frames (∼ 1
second) as the cycle length considering the offloading latency under different networks. Second,
drift problem should always be considered during the tracking process. Otherwise the augmented
contents will move away from right position gradually. With regular recognition requests, EdgeXAR
correct the positions of objects with recent recognition result to achieve higher accuracy.
The two pipelines cooperate and hide the offloading delay between the key frame and the

result frame from users’ perception. Our tracking method is not only especially suitable for MAR
applications under edge offloading scenario, but also provides strong latency compensation for
image recognition offloading in further-located cloud servers.

5.2 Content Renderer
Content renderer is the output module of EdgeXAR, which uses a 3D graphics engine to render
the virtual contents with 6DoF poses of objects. This ensures that virtual contents attach precisely
to physical objects in a 3D world space. For each camera frame, the graphics engine updates the
virtual contents based on the output of the visual tracker. For each object, the engine first calculates
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(a) Camera frame input
sent from the client to
the server.

(b) Areas with high pixel
variance are highlighted.

(c) Identified areas before
noise reduction as binary
image.

(d) The objects of inter-
est are identified and seg-
mented.

Fig. 7. Procedures of the image segmentation.

a homography to find the 2D transition between the reference image and the target image, then
casts the 2D position into a 3D spatial pose.

5.3 Network Module
The network module is the messenger between the client and the server. UDP, as a connection-less
protocol, saving the overhead of handshaking dialogues, becomes our choice. Packet losses may
happen as UDP is an unreliable communication method, but our system tolerates packet loss
naturally: edge recognitions happen periodically, and new recognition result can be received very
soon in next cycle. Even if a reliable network protocol is used for visual task requests, the results
could come late due to the re-transmission of lost packets, which is not acceptable in this real time
system. EdgeXAR uses non-blocking UDP in independent threads so that the client and server will
not be blocked for network issues.

6 SERVER DESIGN
In mobile AR systems, continuous visual processing in real time is nearly impossible on current
devices. In EdgeXAR framework, we use edge and cloud servers for those heavy computer vision
tasks. Therefore the mobile and wearable clients can provide fluent AR experience and abundant
contents.

6.1 Task Manager
Upon launching an AR application, the mobile client will communicate with the server to initialize
the edge service. On server side, task manager will create three threads for receiving requests,
visual processing and sending results, respectively.

6.2 Visual Task Processor
Visual task processor fulfills visual requests by extracting desired information from camera frames
through following steps.

6.2.1 Image Segmentation. Upon receiving an incoming camera frame from the client, the server
starts to perform the image processing tasks. The processor segments the camera frame before
retrieving information from it to reduce system load and speed up the process. The image segmen-
tation identifies and extracts the segments in images that contain the image objects while removing
the background. This effectively ensures that each query patch contains at most one reference
image.
The segmentation process is shown in Figure 7. We first apply Gaussian blur to the raw image

to reduce noise. Then we apply a sliding window that iterates through the image, and compute
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Fig. 8. Image recognition pipeline. One frame is first segmented into multiple images, on which image
retrieval techniques are applied to find nearest neighbors. Finally, template matching with neighbors verifies
the results and calculates positions of the segmented images.

the variance in pixel color values for each window. We flag the areas with variance higher than a
constant threshold as positive ones, while the areas with low variance as negative ones since they
are likely to be part of the background. We further clean up the resulting binary figure by applying
an erosion followed by a dilation. The processed image contains polygons outlining the located
objects. The system can then extract the objects by cutting the polygons from the raw image.

6.2.2 Image Retrieval. Our system uses image features to retrieve corresponding image from the
dataset. The overall image retrieval pipeline is shown in Figure 8. We first need to detect key points
and extract corresponding features from each reference image to build the dataset. Then we need
to concern the processing speed since the reference images (for building the dataset) and the query
images (getting from camera frames) need to be handled through the same procedure. We use
Multi-scale AGAST[46] detector and FREAK[5] binary feature descriptors. We also adopt Fisher
encoding built upon binary features for accurate and real-time performance. To do Fisher encoding
on binary features, we first need to build a Bernoulli mixture model (BMM) upon the collection
of all descriptors of the dataset images. After getting parameters of the BMM model, descriptors
of an image can be encoded into a single Fisher Vector (FV). Encoded FVs will be L2 and power
normalized, and all FVs of the dataset images will be stored and processed with Locality Sensitive
Hashing (LSH) to create hash tables for faster retrieval.
After building up the dataset, the server can proceed the recognition tasks. It re-sizes the

segmented individual patches simultaneously into scales similar with the reference images, and
encodes them into FVs through the procedures mentioned above. The parameters for the BMM
model used for query patch Fisher encoding is the same with the one used for encoding reference
images. The LSH tables and stored FVs let the server find five nearest neighbors of each segmented
patch, and the server select the correct one out of five using feature matching.
As the last step, feature matching verifies the result of image retrieval and calculates a 6DOF

pose of the target. Feature matcher can find the corresponding feature pairs of each segmented
patch using the feature descriptors from the patch and the nearest neighbors. We pick a neighbor
as the recognition result and start pose estimation only if it has enough matches. We calculate
the homography of the target within camera view and return simple corner positions to the task
manager. The patch will be discarded without returning any result if there are not enough good
matches for all five nearest neighbors in the dataset.
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Fig. 9. The PosterAR app running our EdgeXAR framework. The app utilizes our framework to retrieve poster
information and overlay movie trailers on the camera stream.

7 IMPLEMENTATION AND EVALUATION
The mobile client is implemented on theAndroid platform. The mobile visual tracker is implemented
with OpenCV4Android1 library, and the 3D renderer is a modified Rajawali2 library. We implement
the edge server in C++ based on Linux platform. OpenCV 3 library is used for multi-scale AGAST
feature points detection and FREAK descriptor extraction. For building LSH tables and finding
approximate nearest neighbor of FVs, we select FALCONN 4 library. The parallel processing relies
on OpenMP5.

We develop PosterAR as a representative AR application to showcase our EdgeXAR framework.
Imagine the scenario when a user steps into a cinema, he/she does not know which movie to watch.
Watching trailer can help the consumer select a movie. All he/she needs to do is to launch the
PosterAR app, point the camera to the posters, then the trailer will automatically start to play. To
further improve the QoE, the play buttons and movie trailers are strictly overlaid according to the
homography of the posters, so that they are precisely coupled as if there is a virtual video wall.
Figure 9 shows the running examples of PosterAR app. In the left part, the user is holding the

phone against two movie posters and the app augments trailers on top of the posters. In the middle
and right parts, movie trailers start to play in 3D after the user presses the play button. In this
section, we collect relevant data from PosterAR to evaluate the performance of our framework.

7.1 Experiment Setup
On the client side, the PosterAR app runs on a Xiaomi MI5 with a quad core CPU and 4GB RAM. On
the server side, we deploy servers on both a local PC and the Google Cloud Platform to respectively
address the requirements of edge and cloud computing. The local PC is configured with an Intel
i7-5820k CPU (6 cores @3.3GHz) and 32GB RAM. We create a WiFi Access Point on the PC to let
it connect to the phone directly. This setup refers to the scenario in which the edge computing
components collocate with the nearby LTE tower or local router within one hop distance from the
mobile device. The virtual machine on Google Cloud has 8 vCPUs and 32GB RAM.
We conduct our experiments with respect to mobile tracking performance, offloading latency,

and image retrieval accuracy. In the end, we compare several performance metrics of edge and
cloud recognition functionalities between EdgeXAR and a leading commercial AR framework.

1http://opencv.org/platforms/android.html
2https://github.com/Rajawali/Rajawali
3http://opencv.org
4https://falconn-lib.org
5http://openmp.org
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Fig. 10. Four common scenarios of camera movement: (a) fast movement with motion blur; (b) camera rotate;
(c) scaling caused by forward and backward movement; (d) tilt caused by changing view. The green edges are
labeled with tracking results from the mobile client.

7.2 Tracking Performance
Visual tracker is the key component of the EdgeXAR framework, whose performance affects directly
the user’s perceived experience. In this section, we evaluate the performance of visual tracker with
respect to the tracking accuracy and tracking speed.

7.2.1 Tracking Accuracy. An important indicator of the tracking performance is the quality of
6DoF tracking, which is crucial in providing a seamless AR experience. We design four common
tracking scenarios to evaluate the performance: fast movement, rotation, scaling, and tilt. The results
are shown in Figure 10.
We record the positions of the poster’s four corners in each frame given by the tracker, and

obtain the ground truth by manually labeling corners for all frames. There are two common ways to
measure the tracking accuracy: a) intersection over union (IOU), which considers the bounding boxes
of both the tracking result and the ground truth, and it is defined as the proportion of intersection
area within the union area of the two boxes; b) pixel error, which is defined as the pixel distance
on screen between the center of the tracking result and that of the ground truth. As our tracking
method provides fine-grained 6DoF results, the bounding boxes are irregular quadrilaterals, whose
intersection area and union area are complex to calculate. Instead, the center of each bounding box
is more convenient to find, which is the intersection point of the two diagonals of the box. For this
reason, we use pixel error as the evaluation metrics in this part. The results are shown in Figure 11,
where the pixel errors in all scenarios are as low as 1 or 2 for most of the time. The worst case is
rotation, but the pixel errors are still under 5. Such low pixel error is within the precision expected
by users given the high resolution of displays and their own tolerance to alignment issues. Note
that in the case of see-through displays, the tolerance of users may be much lower and need to be
validated through a user experiment.

Also the rotation scenario shows a trend of drift, which is common in incremental tracking.
However, our system handles the drift problem as the mobile client sends recognition requests
periodically, and revises the position in tracking with the recognition results accordingly. This
design guarantees that drift in tracking will last no longer than 30 frames in the worst case.

7.2.2 Tracking Speed. The time consumption of tracking each frame is composed of four parts:
time to down sample the frame, time to calculate the optical flow of feature points, time to estimate
the poses of objects, and idle time waiting for next data. Since we use feature points based method

14



EdgeXAR EICS’22, June 2022, Sofia Antipolis, France

(a) Fast Movement. (b) Rotation.

(c) Scaling. (d) Tilt.

Fig. 11. Tracking accuracy in pixel errors. Our visual tracker performs good in all four scenarios of camera
movement with a pixel error below 2 pixels for fast movement, scaling and tilt, and below 5 pixels for rotation.

Fig. 12. Time consumption for tracking one frame with different amount of feature points. The results are
averaged over 200 runs with standard derivation shown in black line.

in tracking, the amount of points would influence the performance and delay of tracker. To learn
the impact of this factor, we measure the time consumptions of tracking camera frames with four
different numbers of feature points, which are 60, 120, 180 and 240, correspondingly. For each case,
we record the timestamps of different parts for 500 frames.

The results are shown in Figure 12. There is a clear trend that the time consumption of tracking
one frame increases with the number of feature points, and the optical flow calculation part results
in this time variance. To guarantee a 30 FPS performance of the tracker, the upper limit of the time
consumption on each frame is 33.34ms. We can see that all four cases satisfy this requirement on
average, and non-qualified only in worst cases with 240 feature points. We conclude that our visual
tracker ensures a real-time performance with the amount of feature points less than or equal to 180.
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(a) CDF of offloading latency for both edge offloading
scenario and cloud offloading scenario.

(b) Distribution of offloading latency in passed
frames.

Fig. 13. Delay of offloading for both edge scenario and cloud scenario with 200 runs. Compared with cloud
offloading scenario, edge offloading scenario displays a lower latency, as shown in both latency time and
passed frames.

7.3 Offloading Latency
Offloading latency is defined as the time period from the moment obtaining request camera frame
data to the moment displaying offloading result, which is composed of three parts: delay of client,
including the time to compose request and calculate new poses after receiving the result; delay of
server, including the time to parse request and recognize image; delay of network, including the
round trip time of the datagram packets.

In this section, we measure both the edge offloading latency and the cloud offloading latency with
the PosterAR app. For each offloading scenario, 200 offloading tasks are generated and recorded.

7.3.1 Latency Distribution. Figure 13a is the CDF of overall offloading latency for two offloading
scenarios, and edge offloading scenario display a lower latency than cloud offloading scenario. 60%
of the edge offloading tasks are finished before 300ms, and 97% of them are finished before 500ms.
On the contrary, only 35% of the cloud offloading tasks are finished before 500ms, but all of them
are finished before 850ms. (We also measure the latency of cloud offloading scenario under 4G
connection in Section 7.5.3.) Figure 13b is the distribution of offloading latency in passed frame
numbers, which represents the number of frames that has passed (processed by visual tracker)
before the offloading results are showed to user. For the edge offloading scenario, 60% of the results
are showed within 8 frames after the starting points of offloading, and 100% of them are showed
within 16 frames. Meanwhile, cloud offloading latency follows a normal distribution, and we come
to the same conclusion as before that cloud offloading scenario has a longer latency than edge
offloading scenario, as the mean of this “normal distribution” is 15 frames.
Figure 14 shows the components of latency for both scenarios. The part compose request takes

around 60ms, where encoding raw frame data into a small image file takes most of this time. The
uplink latency and downlink latency parts in the edge offloading scenario are much shorter than
that in cloud offloading scenario. Parse task is the first part of the time spent on the server to parse
the request as well as control the processing. Recognition is the second part of the time spent on
the server, including the time to segment the camera frame, find the nearest neighbor, match and
verify the result. Although we selected the VM to be as close as possible to the machine we use at
the edge, we observe a significant discrepancy in the processing time on the server between the
two use cases. For both parse task and recognition, the edge server processes faster than the cloud
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Fig. 14. Components of latency for both edge offloading scenario and cloud offloading scenario. The results
are averaged over 200 runs.

Fig. 15. Image retrieval mean Average Precision (mAP) for matching 1-5 nearest neighbors (NN) with or
without segmentation under different scales.

server, showing that the edge server has a better processing capability. Such discrepancy is most
likely due to the different processing architectures between a VM in the cloud and a discrete CPU
running the operations on the edge server. Process result is the time that the client processes the
result and displays it to the user.
From the requirements of visual tracker, the whole offloading procedure should finish within

30 frames (1 second). The results from figure 14 prove that our offloading pipeline fulfills this
requirement under both edge and cloud offloading scenarios.

7.4 Image Retrieval Accuracy
We collect several hundreds of movie posters online, combining with some data from Stanford
Mobile Visual Search Dataset [12] to form 1000 reference images. Query sets are photoed by Mi5’s
back camera, together with several query sets from [12].
If the query images are passed directly into the feature extraction stage without segmentation,

then the resulting retrieval mean Average Precision (mAP) is around 0.76 for top-5 NN (nearest
neighbor), and around 0.61 if we only check one most nearest neighbor, as shown by the “without
segmentation” line in Figure 15. The relative low mAP is mainly caused by multi-target existence
within one query image, or random scattered noise in the background.

Given good segmentation results, the retrieval can achieve good accuracy for top-5 NN. In our
experiment, all patches will be re-sized into a 400×400 resolution. From Figure 15 we can see
that in most cases, we only need to examine the most nearest neighbor during the matching step
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to get the correct result, and the expectation of examined neighbor number is close to 1. The
high-resolution line corresponds to a patch size of at least 400×400 pixels. The mid-resolution line
corresponds to having segmented patches with size around 200×200 pixels, and the small-resolution
line corresponds to patch size of 100×100 pixels. During our experiment, more than 90% segmented
incoming frames can correctly retrieve their corresponding images in the dataset.

7.5 Performance Comparison with Vuforia
Vuforia is a leading commercial AR framework that supports cloud recognition, and EdgeXAR
focuses on cloud-based AR solutions. Therefore, we compare several performance metrics of cloud
recognition functionalities between EdgeXAR and Vuforia.

To setup the experiment, we download the official CloudReco app fromVuforia. This app performs
image recognition tasks by offloading, receives results and displays augmented contents to user.
On the Android side of Vuforia, we do essential instrumentation on CloudReco to log analysis
data and influence the performance as little as possible. On the server side of Vuforia, we create a
image database with their web services. Since Vuforia supports only one-by-one image uploading,
we create a database with only 100 images, which is a portion of the dataset used for evaluating
EdgeXAR. For our PosterAR app, we use the previous setup mentioned before, and the cloud server
hosted on Google Cloud Platform is used to pursue a fair comparison. BothWiFi and 4G connections
of the phone are used to evaluate the performance of the two frameworks under different network
conditions.

7.5.1 Data Usage. Data transmission is always involved in offloading, so we want to compare the
data traffic usage for the two frameworks. Through our network monitoring of the CloudReco app,
we find out that cloud recognitions in Vuforia framework are implemented with Https requests.
With this knowledge, we setup a man-in-the-middle (MITM) proxy using Fiddler8 and decrypt all
the recognition requests and responses of the CloudReco app. Our key finding is that each request
body contains a JPEG file of the current camera frame, and each response body contains another
JPEG file of the recognized original image from database. Since there are only 100 images in our
created Vuforia demo database, we use this 100 images to trigger cloud recognition tasks on both
frameworks. The average request sizes of the PosterAR app and the CloudReco app are 11.58KB
and 16.24KB correspondingly, as both of them are sending compressed camera frame to the cloud.
However, the average result sizes of the two apps differ hugely. In EdgeXAR, the results contain
only coordinates of the bounding boxes and other identity information of the images, so we make
the result a fixed size of only 400 bytes. In Vuforia, the average size of offloading results is 33.48KB,
showing that Vuforia consumes much more data traffic than EdgeXAR in each offloading task.

7.5.2 Runtime FPS. FPS reflects the runtime performance of the apps, which has straightforward
influence on the user perceived experience. Offloading procedure is an extra burden onto the mobile
device besides frame-by-frame tracking, so we want to learn how would offloading influence the
FPS.

The offloading procedure of the PosterAR app is periodical, but the CloudReco app would trigger
an offloading task when there is no recognized object in the current frame. Imagine a scenario
where the user scans through a series of posters on the wall, and periodical offloading happens
in both frameworks. To simulate this scenario, we make a slideshow of the images on the screen
and point the phone’s camera to the screen when the two apps are launched. The slideshow has a
fixed change interval of 2 seconds, and we record the runtime FPS of both apps. A typical fragment
of the result is shown in figure 16a. We can see that the FPS of the CloudReco app will decrease
significantly upon receiving a result, and we perceive obvious non-smooth frames during the
experiment. In comparison, the PosterAR app runs at a much stable FPS with little jitters around
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(a) FPS of apps with offloading built with EdgeXAR
and Vuforia.

(b) CDF of offloading latency for both EdgeXAR and
Vuforia with 200 runs.

Fig. 16. Performance comparison of EdgeXAR and Vuforia in terms of FPS and offloading latency.

30. As the offloading result of Vuforia is the original image, feature extraction and matching are
executed on the client, which are computationally intensive for mobile devices that decrease the
FPS significantly.

7.5.3 Offloading Latency. We use the same scenario in measuring FPS to trigger 200 offloading
tasks for both EdgeXAR and Vuforia under WiFi and 4G connections, and the offloading latency
results are shown in figure 16b. We have already seen the CDF of EdgeXAR cloud offloading latency
under WiFi connection in previous section, and the CDF of that latency under 4G connection has a
similar pattern with it, with slightly longer latency but still guaranteed to finish within 1 second.
These latency results of EdgeXAR cloud offloading prove that our periodical offloading design
works with cloud servers under both WiFi and 4G connections.

On the contrary, Vuforia cloud offloading has a much longer latency, especially under 4G
connection. For Vuforia cloud offloading under WiFi connection, only 30 percent of the offloading
tasks are finished with 1 second, and the worst case takes around 1.6 seconds. It is worth to mention
that there is not much difference in the network accessing latency of Vuforia and EdgeXAR cloud
servers, with RTTs of 48 ms and 36 ms, respectively underWiFi connection. Vuforia cloud offloading
under 4G connection has a noticeable poorer performance, with only 50 percent of the offloading
tasks are finished within 2 seconds, and the worst case takes as long as 4.4 seconds. This poor
performance of Vuforia under 4G possibly comes from the combination of large result size and
lossy 4G connection, which turns into a long cold-start latency.

It is important to note that the fifth generation of mobile networks promises latency below 5ms
for the enhanced Mobile Broadband (eMBB) service class [4]. As such, we expect the offloading
latency in 5G to be similar to our WiFi experimental condition.

7.5.4 Multi-target Recognition Support. EdgeXAR framework supports multi-target recognition
from the design of mobile visual tracker and cloud image recognition pipeline, and a running
example of recognizing multiple targets is showed in figure 9. In EdgeXAR framework, most of
the computation burden of recognizing multiple target is offloaded to server, and the mobile client
only processes simple tasks like calculating the bounding boxes with offloading results. On the
contrary, the CloudReco app does not support multi-target recognition, and only one target within
camera view is recognized every time. Even if multi-target cloud recognition is supported under
the current Vuforia offloading design, multiple original images would make the results quite huge,
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and the heavy feature extraction and template matching processes for multiple images on mobile
would ruin the user experience. As a result, EdgeXAR will enable users to interact with multiple
interactive objects in AR.

8 DISCUSSION
8.1 Application of EdgeXAR and Usecases
In this paper, we demonstrate EdgeXAR through a single movie poster recognition application.
However, EdgeXAR provides functions to develop more complex applications. EdgeXAR benefits
all applications requiring fine alignment of digital content over the physical world. Typical use
cases may involve sensor information display in smart homes. In physical houses, it is common
practice to regroup all control functions within the same location. For instance, all light switches
are often grouped next to a room’s entry or exit doors, often with the control panels for thermostats.
Similarly, controls for house alarm, intercom, and outdoors domotics are often located next to
the front door. In such a scenario, providing accurate alignment of the digital controls with their
physical counterpart is critical to avoid user confusion when displaying information and preventing
erroneous manipulation. For instance, a misalignment with a smart intercom control placed next to
a smart home alarm control may lead to the user accidentally setting up the alarm while trying to
answer the intercom. EdgeXAR also has applications in pervasive AR, where users wear headsets
in the street and overlay content over buildings’ facades. The lightweight headsets used in mobile
scenarios are often even less powerful than smartphones, requiring to leverage the power of remote
machines. The object detection, perspective estimation and rendering capabilities of EdgeXAR
enable displaying content over the building facades, for instance, over storefronts. Meanwhile, the
latency compensation technique allows a smooth user experience even on highly variable mobile
networks, especially 5G.

8.2 AR application Development with EdgeXAR
We implement EdgeXAR as a Java library for the Android mobile operating system. Similar to other
AR frameworks, this library exposes the typical functions for AR applications, including frame
preprocessing, feature extraction, object detection, object recognition, template matching, object
tracking, and annotation rendering as defined in Figure 3. The EdgeXAR framework provides a level
of abstraction hiding how these functions are executed to the developer. As such, the developer
can call the functions in the application code without considering whether the function will be
executed on-device or in the cloud. Functions may experience longer latency due to the network
component (see Section 7.5.3). As such, we implement them as asynchronous callbacks, leaving to
the developer control over the execution order of the AR pipeline.
It is important to note that the implementation of EdgeXAR was meant to abstract the remote

execution of functions over the network. As such, the server-side of EdgeXAR is not meant to
be directly modified by typical AR application developers. EdgeXAR’s server thus operates as a
standalone application. For more advanced developers, adding new features would require adding
a new module to the server-side and implement the abstraction at the client-side.

8.3 Limitations and Future Works
In this paper, we introduced EdgeXAR, a framework for remote execution of AR functions with
latency compensation. EdgeXAR addresses the added network transmission latency through a tech-
nical angle. The proposed latency compensation technique uses local object tracking to recompute
the results of object recognition returned by the server. As such, we evaluate EdgeXAR through
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technical measurements, and show that the average error is often below what users can perceive
on handheld devices. However, for extreme use cases (high latency, unexpected losses, complex
scenes with multiple objects), such compensation techniques may not be sufficient. In future works,
we would therefore focus on evaluating the limits of latency compensation techniques on the user
experience through user studies. Such studies would allow us to design compensation solutions
adapted to the user’s perception of the system, and focus on the primary pain points of the AR
experience. From a technical perspective, we will also consider improving the optical flow-based
tracking which is not resistant to occlusion. We plan to integrate sensor fusion and other occlusion
resistant tracking methods to handle this problem. And the performance of our current image
segmentation method is unstable on complex backgrounds, thus we are considering of integrating
multiple methods to overcome this problem.

9 CONCLUSION
In this paper, we presented EdgeXAR, an edge-based AR framework which solves large-scale
multiple image recognition and real-time augmenting problems on mobile and wearable devices.
We proposed an highly flexible tracker running on mobile to hide the offloading latency from user’s
perception, and a multi-object image retrieval pipeline running on server. We further showed that
our framework can support user-centric AR, with the prominent features of high tracking accuracy,
high recognition accuracy, low overall offloading latency, and high runtime performance. Our
evaluation showed that the AR app built with EdgeXAR performs effectively in terms of seamless
AR experience and robustness. EdgeXAR performs tracking in less than 25ms for up to 240 feature
points, and presents a low (1~2) pixel error, allowing to efficiently track multiple objects over a
scene at 30 FPS, and hide an offloading latency of up to 600ms. Compared to a major commercial
framework, EdgeXAR provides more stable performance, with a framerate between 29 and 31 FPS,
transmits 87% less data, halves the offloading latency in Wifi, and reduces it by 70% in LTE, while
supporting multi-target recognition.
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